Page path:

Su­per­res­ol­u­tion Mi­cro­scopy

Su­per­res­ol­u­tion mi­cro­scopy al­lows us to visu­al­ize mi­cro­struc­tures be­low the dif­frac­tion limit. 

The tech­niques Su­per­res­olu­tion Struc­tured Il­lu­min­a­tion (SR-SIM) and Pho­to­activ­ated Loc­al­iz­a­tion Mi­cro­scopy (PALM) are com­bined with our con­fo­cal laser scan­ning mi­cro­scope. more ...

Our latest su­per­res­ol­u­tion in­stru­ment is based on the Stimulated Emission Depletion (STED)[1] tech­nique.

The Ab­berior In­stru­ments easy3D STED can provide a lat­eral res­ol­u­tion be­low 25 nm and a 3D res­ol­u­tion of up to 60 nm.

The in­stru­ment in­cludes the meth­odes pulsed-STED[2], gated-STED[3],[4], and RES­Cue STED[5]. It is the first STED mi­cro­scope with MIN­FIELD[6] tech­nique on the com­mer­cial mar­ket.

3D STED
STED
© A. Ellrott / MPI MM

Tech­nical fea­tures

Ex­cit­a­tion laserEx­cit­a­tion laser
STED laserSTED laser
De­tec­tion*De­tec­tion*
Ex­cit­a­tion laser 
STED laser
405 nm (cw, 50 mW)
De­tec­tion* 
---
 

 450/​50 nm

Ex­cit­a­tion laser 
STED laser
440 nm (pulsed, 500 µW)
De­tec­tion* 
  595 nm
(pulsed, 1 W)
 

 509/​22 nm

Ex­cit­a­tion laser 
STED laser
485 nm (pulsed, 1 mW)
De­tec­tion* 

 525/​50 nm or

Ex­cit­a­tion laser 
STED laser518 nm (pulsed, 300 µW)
De­tec­tion* 

 545/​24 nm

Ex­cit­a­tion laser 
STED laser
561 nm (pulsed, 300 µW)
De­tec­tion* 
  775 nm
(pulsed, 3 W)
 
 605/50 nm or
Ex­cit­a­tion laser 
STED laser 615/​20 nm
Ex­cit­a­tion laser 
STED laser
640 nm (pulsed, 1 mW)
De­tec­tion* 
 685/70 nm
Ex­cit­a­tion laserSTED laserDe­tec­tion*
 
405 nm (cw, 50 mW)
 
---
 

 450/​50 nm

 
440 nm (pulsed, 500 µW)
 
  595 nm
(pulsed, 1 W)
 

 509/​22 nm

 
485 nm (pulsed, 1 mW)
 

 525/​50 nm or

  518 nm (pulsed, 300 µW)  

 545/​24 nm

 
561 nm (pulsed, 300 µW)
 
  775 nm
(pulsed, 3 W)
 
 605/50 nm or
   615/​20 nm
 
640 nm (pulsed, 1 mW)
 
 685/70 nm

 *single-photon-count­ing ava­lanche pho­to­di­ode (apd mod­ule)

 

Re­ser­va­tion

Reservation STED

Loc­a­tion

Room 2242, Phone 931

Re­spons­ible

Andreas Ellrott

Ref­er­ences

1. Hell, S.W., J. Wich­mann. (1994). Break­ing the dif­frac­tion res­ol­u­tion limit by stim­u­lated emis­sion: Stim­u­lated-emis­sion-de­ple­tion fluor­es­cence mi­cro­scopy. Op­tics Let­ters. 19: 780–82. (doi:10.1364/OL.19.000780).
 2. Dyba, M., S. W. Hell. (2003). Pho­tosta­bil­ity of a Fluor­es­cent Marker Un­der Pulsed Ex­cited-State De­ple­tion through Stim­u­lated Emis­sion. Ap­plied Op­tics. 42:5123–29.  (doi:10.1364/AO.42.005123). 
 3. Vi­cidomini, G., G. Mon­eron, K.Y. Han, V. West­phal, H. Ta, M. Re­uss, J. En­gel­hardt, C. Eggeling, and S.W. Hell. (2011). Sharper low-power STED nano­scopy by time gat­ing. Nat. Meth. 8:571–3. (doi:10.1038/nmeth.1624). 
 4. Mof­fitt, J.R., C. Os­se­forth, and J. Mi­chaelis. (2011). Time-gat­ing im­proves the spa­tial res­ol­u­tion of STED mi­cro­scopy. Opt. Ex­press. 19:4242–54. (doi:10.1364/OE.19.004242). 
 5. Staudt, T., A. En­gler, E. Rittweger, B. Harke, J. En­gel­hardt, S.W. Hell, (2011). Far-field op­tical nano­scopy with re­duced num­ber of state trans­ition cycles. Opt. Ex­press. 19:5644–57. (doi:10.1364/OE.19.005644). 
6. Göttfert, F., T. Pleiner, J. Heine, V. West­phal, D. Gör­lich, S.J. Sahl, S.W. Hell. (2017). Strong sig­nal in­crease in STED fluor­es­cence mi­cro­scopy by ima­ging re­gions of sub­dif­frac­tion ex­tent. Proc. Natl. Acad. Sci. USA. 114:2125-30. (doi:10.1073/pnas.1621495114).

 

 

Back to Top