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Charles T. Parker6, Rudolf Amann7, Brian J. Beck8, Patrick S. G. Chain9, Jongsik Chun10,

Rita R. Colwell11,12, Antoine Danchin13, Peter Dawyndt14, Tom Dedeurwaerdere15, Edward F. DeLong16,

John C. Detter9, Paul De Vos14,17, Timothy J. Donohue18, Xiu-Zhu Dong19, Dusko S. Ehrlich20,

Claire Fraser21, Richard Gibbs22, Jack Gilbert23, Paul Gilna24, Frank Oliver Glöckner7,25,
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Abstract: Microbes hold the key
to life. They hold the secrets to our
past (as the descendants of the
earliest forms of life) and the
prospects for our future (as we
mine their genes for solutions to
some of the planet’s most pressing
problems, from global warming to
antibiotic resistance). However, the
piecemeal approach that has de-
fined efforts to study microbial
genetic diversity for over 20 years
and in over 30,000 genome pro-
jects risks squandering that prom-
ise. These efforts have covered less
than 20% of the diversity of the
cultured archaeal and bacterial
species, which represent just 15%
of the overall known prokaryotic
diversity. Here we call for the
funding of a systematic effort to
produce a comprehensive genomic
catalog of all cultured Bacteria and
Archaea by sequencing, where
available, the type strain of each
species with a validly published
name (currently,11,000). This ef-
fort will provide an unprecedented
level of coverage of our planet’s
genetic diversity, allow for the
large-scale discovery of novel
genes and functions, and lead to
an improved understanding of mi-
crobial evolution and function in
the environment.

Charting a New Path for
Microbial Research

Earth is a microbial planet. Through

their vast command of metabolic and

catabolic processes, microorganisms con-

trol and sustain all life on Earth. They

have no equal in their ability to survive in

hostile environments or adapt to changing

environmental conditions. By most any

measure, microbes dominate the planet.

Without them, life as we know it would

cease to exist. They are our past—holding

the secrets to the origins of life—and

our future—sustaining life by maintaining

essentially all of the biogeochemical cycles.

Yet we know surprisingly little about

microbes. Today, we have the tools to

make major advances in our understand-

ing of how life evolves and functions

in diverse habitats by determining the

genome sequence of representatives of

every known life form. Toward this goal,

researchers are systematically targeting

plant and animal species to fill in evolu-

tionary gaps in the branches of the Tree

of Life (ToL) (http://tolweb.org/tree/).

However, these larger life forms constitute

only a small portion of the tree and, being

a relatively recent evolutionary innova-

tion, represent only the last 550 million

years of the more than 3,500,000,000

years of biological evolution on Earth.

The great majority of the branches in the

ToL are microbial, comprising the Bacte-

ria, Archaea, protists, fungi, and viruses

[1–5]. Even with 150 years of microbio-

logical research completed, in which many

of the major innovations have taken

place over the past six decades, most of

the microbial world—and therefore of

biology as a whole—remains unexplored

[6–10].

The first 15 years of microbial genome

sequencing (1995–2009) yielded more

than 1,000 complete genome sequences

and another 1,000 draft genomes of

Bacteria and Archaea [11–13]. Most of

these projects were initiated based on

potential practical applications for the

selected organism, often in the fields of

medicine (e.g., pathogens, drug targets,

and probiotics) or biotechnology (e.g.,

biopharmaceuticals, bioenergy, agricul-

ture, environmental remediation, and

industrial production of microbial prod-

ucts). While this application-driven science

provided a significant gain in information

for those purposes, it ignored most of

the microbial diversity on the planet

[1,7,9–10]. It is time to move beyond this

approach to launch a systematic genomic

exploration of all validly named microbial

species, starting (for pragmatic reasons

based on genome size) with Bacteria and

Archaea. The goal of this ambitious but,

given the currently available technologies,

assuredly tractable initiative is to sequence

the genome of at least one representative

of every bacterial and archaeal species

whose name has been validly published in

accordance with the International Code of

Nomenclature of Bacteria (Bacteriological

Code) [14–19].

Each of these approximately 11,000

bacterial and archaeal species has a

designated type strain, a living culture

that serves as a fixed reference point for

the assignment of bacterial and archaeal

names, thus often also denoted as a

reference strain (see Box 1). A type strain

is not the archetypal representative of a

species, a common misperception. Thus,

type strains play a crucial role in defining

the phylogenomic and taxonomic space of

Bacteria and Archaea, facilitating efforts

to assign evolutionary relationships and

identify new species. By definition, type

strains are descendants of the original

isolates used in species and subspecies

descriptions, as defined by the Bacterio-

logical Code [14], that exhibit all of

the relevant phenotypic and genotypic

properties cited in the original published

taxonomic circumscriptions. They are

made available in pure culture (except in

cases such as symbionts) for subsequent

taxonomic revision in accordance with the

rules defined by the Bacteriological Code

[14,17–19]. The type strains represent the

only area of the microbiological sciences

in which the deposit and availability of

biological material is mandatory, allowing

the verification of past work and poten-

tially extending to further aspects as time

and technology become available by using

the same biological material.

Of the approximately 25,000 docu-

mented bacterial and archaeal genome

projects [13], 3,538 target 3,285 nonre-

dundant type strains out of the currently

estimated 11,000 (30%) (Figure 1; Table 1).

If we continued this largely application-

driven mode of selecting sequencing tar-

gets, another 83,000 genome projects

would be required in order to cover the

type strains for the 11,000 species that

represent the part of the cultivated diversity

of Bacteria and Archaea with validly

published names. Despite the compara-

tively low funding support for taxonomic

work, about 650 new species names are

validly published per year (according to the

rules defined by the Bacteriological Code),

pointing to an ever-increasing gap.
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Therefore, the first phase of the pro-

posed effort should systematically target

the 7,830 type strains not previously

addressed for high-quality draft genome

sequencing [20]. Finishing a high-quality

draft sequence should be targeted for at

least one representative of each genus,

with the type strain of the type species

having priority [21]. Simultaneously, type

strains of all new species and subspecies

whose names are validly published should

be sequenced at the time they are deposited

into culture collections. As ongoing tech-

nological advances continue to reduce

sequencing costs, sequencing and publica-

tion of the genome, which is already far

simpler than phenotypic characterization,

will become a routine part of the strain

deposition process.

Closing the Phylogenetic Gap

Previously, microbial genome sequenc-

ing projects were initiated primarily by

individual researchers who targeted one or

a few microorganisms of interest. With the

advent of new high-throughput sequenc-

ing technologies, we are witnessing a shift

from ‘‘one principal investigator (PI), one

genome’’ projects to large-scale sequenc-

ing initiatives that engage a wider research

community. Cataloging Earth’s microbial

genetic diversity cannot realistically be

achieved by a single sequencing center, a

single culture collection, a single funding

agency, or even a single country. Interna-

tional cooperation—to share both the

work and its funding—will be essential.

The study and understanding of microbial

life—and for that matter, all life—cannot

be separated or divided by man-made

silos based on application or economic

relevance. Indeed, we have reached the

point at which scientific progress can be

hindered and limited by the insulation of

individual funding agencies.

While prospects for developing a

groundbreaking interagency funding

mechanism remain on the horizon, efforts

to forge multinational collaborations are

underway. A consensus agreement has

already been achieved among some of

the major sequencing facilities and culture

collections in the United States, Europe,

and Asia that will lead the DNA isolation

and sequencing efforts.

The time is ripe for a cooperative

venture of this scale. High-profile exam-

ples of such successfully coordinated

efforts include the pilot project of the

Genomic Encyclopedia of Bacteria and
Archaea (GEBA) (http://www.jgi.doe.

gov/programs/GEBA/) and the Human

Microbiome Project (HMP) (http://www.

hmpdacc.org/).

The US Department of Energy (DOE)-

funded pilot GEBA project is the first

large-scale effort applying phylogenetically

balanced sampling of the bacterial and

archaeal branches of the ToL. Its goal,

the sequencing of 250 microbial genomes

selected based on their phylogenetic nov-

elty, required a coordinated pipeline for

microbial cultivation and DNA extraction,

sequencing, annotation, and comparative

analysis. The publication of the first 56

draft genomes from this project [22]

confirmed that vast uncharted genetic

Table 1. Numbers of Archaea and Bacteria.

number of nonredundant 16S rRNA genes from Bacteria and Archaea 479,7261

number of cultured Bacteria and Archaea Unknown

number of cultured Bacteria and Archaea available in culture collections 106,3722

number of cultured Bacteria and Archaea in culture collections that are type strains ,11,0003,4

number of cultured Bacteria and Archaea in culture collections that are type strains and have a genome sequencing project 3,2855

number of cultured Bacteria and Archaea in culture collections that are type strains and have a genome sequencing project
at finished or draft stage

1,9645

number of Bacteria and Archaea strains with genome projects 24,559

1http://www.arb-silva.de;
2http://wdcm.org;
3http://services.namesforlife.com/home;
4http://www.bacterio.cict.fr;
5http://genomesonline.org/.
doi:10.1371/journal.pbio.1001920.t001

Box 1. The Value of Type and Reference Strains

Genomic information from a limited sampling of type strains can refine our
understanding of the breadth and depth of the phylogenetic space known from
previously published taxonomic studies. The synergy between classification and
genomics [31] could catalyze an enhanced view and understanding of those
microorganisms, as outlined in a recent American Academy of Microbiology
(AAM) report [32]. Similarly, the GEBA project will aim to fully cover a defined
portion of the extant diversity by targeting the approximately 11,000 type strains
that represent the complete current list of Bacteria and Archaea with validly
published names. Given that the richest metadata is associated with the type
strains, a focused, in-depth survey such as this will offer significant benefits by
providing genomic data to complement the wealth of information already
acquired for these organisms. The metadata, such as the physiology of the
organism, will reciprocate by validating the genome-based metabolic recon-
structions.

To keep track of the constantly increasing number of type strains for Bacteria and
Archaea and the list of those that have a genome sequencing project, the
Microbial Earth Project (MEP) was recently launched. MEP (http://www.microbial-
earth.org/) is a public resource providing frequently updated information on the
status of sequencing coverage of the type strains. The resource, maintained at the
DOE Joint Genome Institute, provides data based on the type-strain information
available from N4L (http://namesforlife.com/) and genome projects available from
GenomesonLine Database (http://www.genomesonline.org/) [13]. MEP displays
the list of type strains with and without genome sequencing projects as a list or
as an interactive map (Figure 2).
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novelty does in fact exist in nature.

Gaining a deeper understanding of that

genetic novelty demands the systematic

genomic characterization of ultimately all

bacterial and archaeal species across the

ToL. Toward that end, the CyanoGEBA

project took a phylum-level approach to

sequence 54 phylogenetically and pheno-

typically diverse strains of cyanobacteria

[23]. More recently, the aptly named

GEBA-Microbial Dark Matter (GEBA-

MDM) (http://genome.jgi.doe.gov/MDM/

MDM.home.html) explored the diversity

of the vast universe of uncultured microbes

by using high-throughput single-cell se-

quencing to generate a reference dataset of

201 single-cell genomes from candidate

phyla [24]. At the same time, these

Figure 2. Interactive map based on the NamesforLife (N4L) taxonomic information of the type strains. Each leaf represents a type strain.
Colors denote strains with or without genome projects. Lighter colored nodes denote higher taxonomic ranks. Branch lengths are not meaningful.
doi:10.1371/journal.pbio.1001920.g002

Figure 1. Genome project coverage of bacterial and archaeal type strains. From a total of approximately 11,000 bacterial and archaeal type
strains, 3,285 (30%) have a publicly known genome project.
doi:10.1371/journal.pbio.1001920.g001
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initiatives have also stimulated the quest for

novel organisms in these previously uncul-

tivated groups, further increasing the

number of strains available for study.

The National Institutes of Health

(NIH)-funded HMP project broke new

ground in microbial genomics by virtue of

the unprecedented volume of sequence

data generated by sequencing approxi-

mately 1,000 microbial genomes [25]. Of

even greater consequence is the distribu-

tion of the work across several large-scale

sequencing facilities (i.e., the J. Craig

Venter Institute, Washington University,

Baylor College of Medicine, and the

Broad Institute). By organizing the project

in this manner—a style reminiscent of the

human genome effort—the NIH created a

timely opportunity for collaboration

among some of the world’s leading

sequencing and analysis centers, thus in

effect mandating the standardization of

their sequencing, finishing, and analysis

pipelines. Furthermore, an International

Human Microbiome Consortium (IHMC)

(http://www.human-microbiome.org/)was

formed to coordinate the activities and

policies of the individual international

groups and to facilitate the work under a

common set of principles and policies.

We are also seeing individual sequenc-

ing centers scale up their throughput

capacity dramatically. For example,

the Beijing Genomics Institute (BGI)

announced a project, in conjunction with

several other institutions, to draft sequence

the genomes of 10,000 Chinese microbial

isolates in 3 years. More recently, the

Sanger Institute has announced plans to

sequence 3,000 type strains from the

United Kingdom (UK)’s National Collec-

tion of Type Cultures (NCTC) and make

them available as a community resource.

Overall, these large-scale initiatives con-

firm that our proposed project is well

within the current international sequenc-

ing capacity. Indeed, even if one forecasts

a conservative linear increase in the

number of genome projects, one would

expect to see at least 20,000 strains

sequenced in the next 2–3 years [20].

The real challenge now is to create a

global collaboration that can productively

channel this capacity by guiding the

selection of genome projects, eliminating

redundancies, and establishing interna-

tional standards [26].

Standards for Success

As the HMP project has already shown,

a widely distributed international project

can only succeed if uniform standards are

developed and agreed upon at the begin-

ning and if all participants then adhere to

them throughout the project (see Box 2).

To this end, we propose that such an effort

will be conducted in close collaboration

with the Genomics Standards Consortium

(GSC) [26], which has been spearheading

the international effort to define standards

for sequencing and analysis [20,26–29]. At

the same time, the involvement of culture

collections that have helped to shape

recent Organization for Economic Coop-

eration and Development (OECD) Bio-

logical Resource Centre (BRC)-oriented

documents and the taxonomic infrastruc-

ture surrounding the International Com-

mittee on Systematics of Prokaryotes

(ICSP) and the Bacteriological Code will

ensure that established standards are also

integrated to create a comprehensive and

authoritative output.

Any project of this scale and breadth

depends on harnessing existing knowledge

and resources to succeed. By focusing on

the type and other reference strains of

Bacteria and Archaea, the GEBA project

will build on the wealth of experimental

knowledge and metadata already acquired

for these organisms. A further advantage

Box 2. Global Data Standards

Accurate estimates of diversity will require not only standards for data but also
standard operating procedures for all phases of data generation and collection
[33,34]. Indeed, sequencing all archaeal and bacterial type strains as a unified
international effort will provide an ideal opportunity to implement international
standards in sequencing, assembly, finishing, annotation, and metadata
collection, as well as achieve consistent annotation of the environmental sources
of these type strains using a standard such as minimum information about any (X)
sequence (MixS) [27,29]. Methods need to be rigorously challenged and validated
to ensure that the results generated are accurate and likely reproducible, without
having to reproduce each point. With only a few exceptions [27,29], such
standards do not yet exist, but they are in development under the auspices of the
Genomics Standards Consortium (e.g., the M5 initiative) (http://gensc.org/
gc_wiki/index.php/M5) [35]. Without the vehicle of a grand-challenge project
such as this one, adoption of international standards will be much less likely.

Within the culture collection community, significant progress has been made in
the creation of working documents produced as part of OECD-based initiatives
[32,36]. Most of these reflect established working practices in the more prominent
collections and will serve as the basis for the long-term availability of the strains
that will constitute the core of this project.

Technological developments within taxonomy have also ensured that an ever-
increasing spectrum of parameters is taken into consideration, providing a
complementary source of information on the expressed properties of the
organisms concerned [16]. These serve as international standards in the way
organisms are characterized at this level. The requirement that type strains be
deposited in two collections in two different countries also ensures long-term
availability of this biological reference material, as well as introducing a
verification step during the process of accession. The synergy of these three
elements will provide an unprecedented set of standards that will serve to
significantly improve the quality of the data obtained.

Such transformation of the existing research infrastructure into a globally
distributed and digitally integrated network for microbial research, including
computational science and automated knowledge discovery, would require
overcoming obsolete and science-hostile database protection laws as well as
highly restrictive licensing practices of biological materials [37]. Therefore, all
essential public knowledge assets and the results of the proposed effort would be
linked into a global microbial research commons and thus available to the
scientific community, without restrictions to the fullest extent possible. The
proposed research commons would enable qualified participants to contractually
override the legal obstacles and access a digitally integrated, ever-expanding pool
of biological materials, sequence data, and associated literature [37,38].

The implementation of accepted community standards for this international
project will be accompanied by an international educational outreach program to
provide training and support to undergraduates and postgraduates and to
promote widespread implementation of these standards for sequencing and
analysis.
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is that these strains are already available

to the global research community and

are stored in professional units that are

dedicated to long-term storage and distri-

bution. Adding the genomic component

will increase the value of that knowledge

and will, in turn, be enriched by it. While

completion of the GEBA project will leave

much of the extant microbial diversity

unexplored, its systematic sequencing

would provide a core of more than

11,000 bacterial and archaeal type strains

(including the additional species expected

to be described)—a solid foundation

that can inform the ongoing inquiry into

microbial diversity in its entirety. This

framework of high-quality genomes from

well-characterized type strains is especially

important in light of recent advances in

genome recovery via culture-independent

approaches, namely single-cell and popu-

lation genomics, which are rapidly adding

genomic foliage to the tree of life (see

Box 3) [30]. Without this framework,

the exploration of our microbial planet is

equivalent to navigation without a com-

pass, map, or stars by which to fix one’s

position.

The large-scale sequencing facilities

that have spearheaded the genomics

revolution in microbiology during the

last decade, along with the biological

research centers that capture and main-

tain Earth’s cultured microbial diversity

and the larger community of microbiol-

ogists, are now coming together to form

an unparalleled and truly global initiative

that promises to change the way we

study microbial life. Only with such a

massive undertaking can we hope to

unlock the secrets underlying the evolu-

tionary success of the smallest, most

enduring organisms on Earth.
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