11.05.2016 Individualismus bei Bakterien: Eine Strategie zum Überleben von schwierigen Zeiten
  1. STARTSEITE
  2. Presse
  3. Pressemitteilungen
  4. 11.05.2016 Individualismus bei Bakterien: Eine ...

11.05.2016

Bakterium ist nicht gleich Bakterium – selbst wenn sie genetisch genau gleich sind. Eine neue Studie zeigt, unter welchen Bedingungen bei Bakterien Individualisten entstehen und wie diese dann das Wachstum der ganzen Gruppe in schwierigen Zeiten aufrechterhalten.

Individualismus bei Bakterien: Eine Strategie zum Überleben von schwierigen Zeiten

Egal ob Mensch oder Bakterium – unsere Umweltbedingungen bestimmen, wie wir uns entwickeln können. Dabei gibt es zwei grundlegende Probleme: Erstens: Welche Ressourcen stehen mir zur Verfügung, um zu Überleben und zu Wachsen? Und zweitens: Was mache ich, wenn sich die Umweltbedingungen unerwartet verändern?

Eine Forschergruppe von der Eawag, der ETH Zürich, der EPFL Lausanne und des Max-Planck-Instituts für Marine Mikrobiologie in Bremen hat nun herausgefunden, dass Bakterienpopulationen besonders viele Individualisten hervorbringen, wenn es nur begrenzt Nährstoffe gibt. Das bedeutet, dass diese Bakterienpopulationen sich nicht nur – wie meist angenommen - im Nachhinein an veränderte Umweltbedingungen anpassen. Die Individualisten können auch schon im Vorhinein auf solche Veränderungen vorbereitet sein.

Mangel befördert Vielfalt, Vielfalt macht flexibel

In einer aktuellen Veröffentlichung in der Zeitschrift Nature Microbiology zeigen die Forscher um Frank Schreiber, dass einzelne Zellen in Bakteriengruppen, die unter Nährstoffmangel leiden, sehr unterschiedlich reagieren können. Obwohl alle Zellen einer solchen Gruppe genetisch genau gleich sind, gehen sie ganz unterschiedlich mit den Nährstoffen in ihrer Umgebung um. Konkret gesprochen: Bakterien der Art Klebsiella oxytoca nehmen bevorzugt Stickstoff in Form von Ammonium (NH4+) auf, denn das kostet vergleichsweise wenig Energie. Wenn nicht genügend Ammonium für alle vorhanden ist, beziehen einige Zellen der Gruppe ihren Stickstoff durch Stickstofffixierung aus elementarem Stickstoff (N2), obwohl das deutlich aufwändiger ist. Geht nun das Ammonium plötzlich ganz aus, sind diese Zellen auf den Mangel gut vorbereitet. Auch wenn einzelne Zellen leiden, kann die Gruppe als Ganze weiterwachsen. „Obwohl alle Individuen der Gruppe genetisch identisch sind und den gleichen Umweltbedingungen ausgesetzt waren, sind die einzelnen Zellen verschieden“, so Schreiber.

Modernste Methoden erlauben detaillierte Einblicke  

Die bemerkenswerten Unterschiede zwischen den Bakterien konnten Schreiber und seine Kollegen nur entlarven, indem sie den einzelnen Zellen ganz nah auf den Pelz rückten. „Wir mussten die Nahrungsaufnahme einzelner Bakterienzellen messen – obwohl die nur 2 µm groß sind“, erklärt Schreiber die methodische Herausforderung. „Üblicherweise werden in der Mikrobiologie nur die kollektiven Eigenschaften in Populationen von mehreren Millionen oder gar Milliarden von Zellen zusammen gemessen. Nur durch die enge Zusammenarbeit, die vielfältige Expertise und die technische Ausstattung der beteiligten Forschergruppen war es möglich, so ins Detail zu gehen.“

Frank Schreiber

Die Bakterien-kulturen von K. oxytoca wurden in sogenannten Chemostaten (kontinuierlichen Kulturen) mit verschiedenen Konzentrationen von Ammonium und einem Überschuss an elementarem, gasförmigem Stickstoff (N2) versorgt.

Frank Schreiber

Oben: Einzelne Zellen von K. oxytoca. Das Bild wurde mit einem NanoSIMS aufgenommen und zeigt die Anreicherung der Zellen mit schwerem Stickstoff (15N), nachdem diese mit schwerem elementarem Stickstoff (15N2) gefüttert wurden. Die unterschiedliche Färbung zeigt, dass die genetisch gleichen Zellen einer Population unterschiedlich viel elementaren Stickstoff in die Zellmasse einbauen (je wärmer die Färbung, desto mehr elementarer Stickstoff wurde eingebaut).

Rechts: Technikerin Daniela Tienken und Mitautor Sten Littmann am NanoSIMS (Nanometer-scale Secondary Ion Mass Spectrometer) am Max-Planck-Institut für Marine Mikrobiologie. Das NanoSIMS ist eines der Großgeräte, die die vorliegende Untersuchung möglich machten. Dieses Gerät erlaubt, die Stickstoffixierung einzelner Zellen in einer Bakterienkultur zu messen.

Unten: Das NanoSIMS an der EPFL Lausanne und am Center for Advanced Surface Analysis der Universität Lausanne. Zu sehen sind (von links) die Mitautoren Stéphane Escrig und Anders Meibom sowie Florent Plane.

Auch Bakterien sind Individualisten

Die vorliegende Studie belegt, wie wichtig Individualität – bei Bakterien und im Allgemeinen – in einer veränderlichen Umwelt sein kann. Unterschiede zwischen Individuen verleihen der ganzen Gruppe neue Eigenschaften und erlauben ihr so, mit schwierigen Umweltbedingungen umzugehen. „Dies deutet darauf hin, dass biologische Vielfalt nicht nur im Sinn der Artenvielfalt von Tieren und Pflanzen, sondern auch auf dem Niveau einzelner Individuen bedeutsam ist“, sagt Schreiber.

In einem nächsten Schritt wollen Schreiber und seine Kollegen nun untersuchen, ob solch individuelles Verhalten von einzelnen Bakterienzellen auch in natürlichen Lebensräumen eine wichtige Rolle spielt.

Max-Planck-Institut für Marine Mikrobiologie, M. Schlösser
EPFL, Alain Herzog

Originalveröffentlichung

Phenotypic heterogeneity driven by nutrient limitation promotes
growth in fluctuating environments
Frank Schreiber, Sten Littmann, Gaute Lavik, Stéphane Escrig, Anders Meibom, Marcel Kuypers, Martin Ackermann 

Nature Microbiology, DOI: 10.1038/nmicrobiol.2016.55

Kontakt

Frank Schreiber / +49 30 8104 1414 / frank.schreiberbam.de
Marcel Kuypers / +49 421 2028 602 / mkuypersmpi-bremen.de
Martin Ackermann / +41 58 765 5122 / martin.ackermannenv.ethz.ch

oder an die Pressesprecher

Dr. Manfred Schlösser / +49 421 2028 704 / pressempi-bremen.de
Dr. Fanni Aspetsberger / +49 421 2028 947 / pressempi-bremen.de

Beteiligte Institute

Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
École polytechnique fédérale de Lausanne EPFL, Lausanne, Schweiz
ETH Zürich, Schweiz
Eawag, Dübendorf und Kastanienbaum, Schweiz